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ABSTRACT

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) pro-
vides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites,
as well as gauge analyses where feasible, at fine scales (0.25° � 0.25° and 3 hourly). TMPA is available both
after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave
Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the
present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early
validation results are as follows: the TMPA provides reasonable performance at monthly scales, although
it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates
over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At
finer scales the TMPA is successful at approximately reproducing the surface observation–based histogram
of precipitation, as well as reasonably detecting large daily events. The TMPA, however, has lower skill in
correctly specifying moderate and light event amounts on short time intervals, in common with other
finescale estimators. Examples are provided of a flood event and diurnal cycle determination.

1. Introduction

Precipitation displays small-scale variability and
highly nonnormal statistical behavior that requires fre-
quent, closely spaced observations for adequate repre-
sentation. Such observations are not possible through
surface-based measurements over much of the globe,
particularly in oceanic, remote, or developing regions.
Consequently, researchers have come to depend on
suites of sensors flying on a variety of satellites over the
last 25� years for the majority of the information used
to estimate precipitation on a global basis. While it is
possible to create such estimates solely from one type
of sensor, researchers have increasingly moved to using
combinations of sensors in an attempt to improve ac-
curacy, coverage, and resolution. The first such combi-

nations were performed at a relatively coarse scale to
ensure reasonable error characteristics. For example,
the Global Precipitation Climatology Project (GPCP)
satellite–gauge (SG) combination is computed on a
monthly 2.5° � 2.5° latitude–longitude grid (Huffman
et al. 1997; Adler et al. 2003). Subsequently, the scien-
tific community requested that the estimates be made
available at finer scale, even at the cost of higher un-
certainties. Finer-scale products initiated by the GPCP
include the Pentad (Xie et al. 2003) and One-Degree
Daily (Huffman et al. 2001) combination estimates of
precipitation. Other research groups have introduced a
number of finescale estimates in the past several years
that are now in quasi-operational production (see Huff-
man 2005), including the Climate Prediction Center
(CFC) morphing algorithm (CMORPH; Joyce et al.
2004), the Naval Research Laboratory Global Blended-
Statistical Precipitation Analysis (NRLgeo; Turk and
Miller 2005), the Passive Microwave-Calibrated Infra-
red algorithm (PMIR; Kidd et al. 2003), and the Pre-
cipitation Estimation from Remotely Sensed Informa-
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tion Using Artificial Neural Networks (PERSIANN;
Sorooshian et al. 2000).

This paper describes the Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA), a new dataset that continues the trend toward
routine computation and distribution of finer-scale pre-
cipitation estimates. The primary merged microwave-
infrared product is computed at the 3-hourly, 0.25° �
0.25° latitude–longitude resolution. In common with
the GPCP products, the TMPA is designed to combine
precipitation estimates from various satellite systems,
as well as land surface precipitation gauge analyses
when possible, with the goal that the final product will
have a calibration traceable back to the single “best”
satellite estimate. In the present implementation, the
calibration is based on TRMM estimates. The TMPA is
computed twice as part of the routine processing for
TRMM, first as an experimental best-effort real-time
monitoring product about 9 h after real time, and then
as a post-real-time research-quality product about 10–
15 days after the end of each month. (For brevity, these
will be referred to as the RT and research products,
respectively.) The first has been posted to the Web
since February 2002, while the second is available from
January 1998, for a record that totals more than 9 yr
and continues to grow.

Throughout this paper the research product will be
described first, then modifications for producing the
RT product will be outlined. Section 2 describes the
input datasets, while section 3 describes the algorithms
and section 4 gives dataset status. Section 5 describes
some tests of algorithm performance and gives some
examples for applying the TMPA to typical applica-
tions. Section 6 presents concluding remarks.

2. Input datasets

Most of the coverage in the TMPA depends on input
from two different sets of sensors. First, precipitation-
related passive microwave data are collected by a vari-
ety of low earth orbit (LEO) satellites, including the
Microwave Imager (TMI) on TRMM, Special Sensor
Microwave Imager (SSM/I) on Defense Meteorological
Satellite Program (DMSP) satellites, Advanced Micro-
wave Scanning Radiometer-Earth Observing System
(AMSR-E) on Aqua, and the Advanced Microwave
Sounding Unit-B (AMSU-B) on the National Oceanic
and Atmospheric Administration (NOAA) satellite se-
ries. These data have a strong physical relationship to
the hydrometeors that result in surface precipitation,
but each individual satellite provides a very sparse sam-
pling of the time–space occurrence of precipitation.
Even taken together, there are significant gaps in the

current 3-hourly coverage by the passive microwave es-
timates. The snapshot in Fig. 1 for a particular 3-hourly
period is representative of current “full” microwave
coverage, averaging about 80% of the earth’s surface in
the latitude band 50°N–S. The complement of satellite-
borne passive microwave sensors has shown steady im-
provement over the span of the TMPA data record
(Fig. 2), starting with three satellites in 1998 that aver-
aged about 40% coverage in each 3-h period.

In the current TMPA system, passive microwave
fields of view (FOVs) from TMI, AMSR-E, and SSM/I
are converted to precipitation estimates at the TRMM
Science Data and Information System (TSDIS) with
sensor-specific versions of the Goddard Profiling Algo-
rithm (GPROF; Kummerow et al. 1996; Olson et al.
1999) for subsequent use in the TMPA. GPROF is a
physically based algorithm that attempts to reconstruct
the observed radiances for each FOV by selecting the
“best” combination of thousands of numerical model–
generated microwave channel upwelling radiances. The
associated vertical profiles of hydrometeors then are
used to provide an estimated surface precipitation rate.
The microwave data are screened for contamination by
surface effects as part of the processing, with marginal
contamination denoted as “ambiguous.”

Passive microwave FOVs from AMSU-B are con-
verted to precipitation estimates at the National Envi-
ronmental Satellite, Data, and Information Service
(NESDIS) with operational versions of the Zhao and
Weng (2002) and Weng et al. (2003) algorithm. Ice wa-
ter path (IWP) is computed from the 89- and 150-GHz
channels, with a surface screening that employs ancil-
lary data. Precipitation rate is then computed based on
the IWP and precipitation rate relationships derived
from cloud-model data computed with the fifth-
generation Pennsylvania State University–National
Center for Atmospheric Research (Penn State–NCAR)
Mesoscale Model (MM5). The maximum precipitation
rate allowed is 30 mm h�1. The AMSU-B algorithm can
discriminate between precipitating and nonprecipitat-
ing ice-bearing clouds but cannot provide information
on precipitation systems that lack the ice phase. The
multichannel conically scanning passive microwave sen-
sors (TMI, AMSR-E, SSM/I) have a similar limitation
over land, so the AMSU-B estimates are roughly com-
parable. However, over ocean the conical scanners also
sense liquid hydrometeors, providing additional sensi-
tivity, including to precipitation from clouds that lack
the ice phase. As a result, the AMSU-B estimates over
ocean are relatively less capable in detecting precipita-
tion over ocean. The lack of the lightest rain occurs in
all ocean areas, but it is most important in the subtropi-
cal highs, where all of the rain events are light. A sec-
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ond issue in the current AMSU-B algorithm is that it
neglects calibration differences across the swath due to
variations in the size of individual FOVs. This variation
introduces unphysical variability into the resulting
AMSU-B estimates that must be corrected in a future
release (Joyce and Ferraro 2006).

The second major data source for the TMPA is the
window-channel (�10.7 �m) infrared (IR) data that are
being collected by the international constellation of
geosynchronous earth orbit (GEO) satellites. In con-
trast to the sparse temporal sampling of the passive
microwave data, the GEO–IR data provide excellent
time–space coverage. The CPC of the NOAA/National
Weather Service (NWS) merges the international
complement of GEO–IR data into half-hourly 4 km �
4 km equivalent latitude–longitude grids (hereafter the
“CPC merged IR”; Janowiak et al. 2001). The IR
brightness temperatures (Tb) are corrected for zenith-
angle viewing effects and intersatellite calibration dif-
ferences.

For TMPA research estimates generated prior to the
start of the CPC merged IR dataset in early 2000 (see
Fig. 2), we use a GPCP dataset (also produced at CPC)
that contains 24-class histograms of GEO–IR Tb data
on a 3-hourly, 1° � 1° latitude–longitude grid covering
the latitude band 40°N–S (hereafter the “GPCP IR his-
tograms”; Huffman et al. 2001). This dataset also in-

cludes grid-box-average Geostationary Operational
Environmental Satellite (GOES) Precipitation Index
(GPI; Arkin and Meisner 1987) estimates computed
from LEO–IR data recorded by the NOAA satellite
series. These LEO–GPI data are used in the TMPA to
fill gaps in the GEO–IR coverage, most notably in the
Indian Ocean sector, where there was no GEO–IR cov-
erage before Meteorological Satellite 5 (Meteosat-5) be-
gan providing observations there in June 1998.

All IR-based precipitation estimates share the limi-
tation that the Tb’s primarily correspond to cloud-top
temperature, and implicitly cloud height. Arkin and
Meisner (1987) showed that such information is poorly
correlated to precipitation at fine time/space scales but
is relatively well correlated at scales larger than about 1
day and 2.5° � 2.5° of latitude–longitude.

Finally, the research TMPA also makes use of three
additional data sources: the TRMM Combined Instru-
ment (TCI) estimate, which employs data from both
TMI and the TRMM precipitation radar (PR) as a
source of calibration (TRMM product 2B31; Haddad et
al. 1997a,b); the GPCP monthly rain gauge analysis de-
veloped by the Global Precipitation Climatological
Center (GPCC; Rudolf 1993); and the Climate Assess-
ment and Monitoring System (CAMS) monthly rain
gauge analysis developed by CPC (Xie and Arkin
1996).

FIG. 1. Combined microwave precipitation estimate for the 3-h period centered at 0000 UTC 25 May 2004 in mm h�1. Blacked-out
areas denote regions that lack reliable estimates, while the zero values in the remaining areas are color-coded to depict the coverage
by the various sensors. The order of precedence for display and corresponding zero color are TMI (white), SSM/I (light gray), AMSR-E
(medium gray), and AMSU-B (dark gray). (In the TMPA the TMI, SSM/I, and AMSR-E are averaged where overlaps occur.)

40 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 8

Fig 1 live 4/C



During the early TMPA design work, the authors
realized that they could obtain (restricted) access to the
requisite microwave and IR data within a few hours of
observation time. “Real time” (or more strictly, near–
real time) production makes the estimates useful to sev-
eral new classes of users. At the same time, experience
indicated that bias adjustments based on monthly gauge
data materially improve the accuracy of the estimates
(Huffman et al. 1995, among others). These consider-
ations led to the two-track approach of computing both
RT and research products. In the following sections we
describe the research product approach, then introduce
the necessary changes that distinguish the RT algo-
rithm.

3. TMPA algorithms

The TMPA estimates are produced in four stages: 1)
the microwave precipitation estimates are calibrated
and combined, 2) infrared precipitation estimates are
created using the calibrated microwave precipitation, 3)
the microwave and IR estimates are combined, and 4)

rain gauge data are incorporated. Figure 3 presents a
block diagram of the TMPA estimation procedure.
Each TMPA precipitation field is best interpreted as
the precipitation rate effective at the nominal observa-
tion time.

a. Combined microwave estimates

All of the available passive microwave data are con-
verted to precipitation estimates on individual FOVs,
then each dataset is averaged to the 0.25° spatial grid
over the time range �90 min from the nominal 3-hourly
observation times (0000, 0300, . . . , 2100 UTC). The
gridding is “forward”—each FOV is averaged into the
grid box that contains its center—except the AMSU-B
gridding is “backward”—each FOV is approximately
apportioned to the grid box(es) it occupies. All of these
estimates are adjusted to a “best” estimate using prob-
ability matching of precipitation rate histograms as-
sembled from coincident data, similar to the probabil-
ity-matched method suggested by Miller (1972) and
used, for example, by Krajewski and Smith (1991). The
research product algorithm takes the TCI as the cali-
brating data source following the results of the prelimi-

FIG. 3. Block diagram for both the RT and research product
algorithms, showing input data (left side), processing (center),
output data (right side), data flow (thin arrows), and processing
control (thick arrows). The items on the slanted shading run asyn-
chronously for the RT algorithm, and the items on the grid shad-
ing are only performed for the research product. “Best” in the top
center shaded box is the TMI GPROF precipitation estimate for
the RT algorithm and the TMI–PR combined algorithm precipi-
tation estimate for the research product.

FIG. 2. Data availability during the TRMM era for satellite
sensors used in the TMPA. Solid lines denote periods when the
data are used in the (version 6) research product, and dashing
indicates when they are available but not used.

FEBRUARY 2007 H U F F M A N E T A L . 41



nary validation of version-6 TRMM products. How-
ever, the coincidence of TCI with any of the sensors
other than TMI is sparse, so we establish a TCI–TMI
calibration, which is then applied to the TMI calibra-
tions of the other sensors to estimate the TCI-
calibrated values. The TCI–TMI relationship is com-
puted on a 1° � 1° grid for each month using that
month’s coincident data aggregated on overlapping 3°
� 3° windows to accommodate the somewhat different
regional climatologies of the two estimates.

Preliminary work showed that the TMI calibrations
of the other sensors’ estimates are adequately repre-
sented by climatologically based coefficients represent-
ing large areas. In the case of the TMI–SSM/I calibra-
tion, separate calibrations are used for five oceanic lati-
tude bands (40°–30°N, 30°–10°N, 10°N–10°S, 10°–30°S,
30°–40°S) and a single land–area calibration for each of
the four 3-month seasons. The TMI–AMSR-E and
TMI–AMSU-B calibrations are set in the form of a
single climatological adjustment for land and another
for ocean. The AMSU-B calibration has two additional
issues. First, the NESDIS algorithm changed on 31 July
2003, so separate sets of calibrations are provided for
the two data periods. Second, in both periods the
AMSU-B fractional occurrence of precipitation in the
subtropical highs is notably deficient. After extensive
preliminary testing, the authors judged it best to de-
velop the ocean calibration in regions of significant pre-
cipitation and apply it everywhere, recognizing that the
resulting fields would have a somewhat low bias. For all
sensors the calibration is a simple matchup of histo-
grams. For simplicity, in all cases the calibrations in the
40°–50° latitude belts in both hemispheres are taken to
be the calibrations that apply just equatorward of 40°.

A calibration interval of a month is chosen to ensure
stability and representativeness, except for the TMI–
AMSR-E calibration, which requires 2 months for sta-
bility. The TCI–TMI calibration interval for the re-
search product is a calendar month, and the resulting
adjustments are applied to data for the same calendar
month. This choice is intended to keep the dependent
and independent datasets for the calibrations as close as
possible in time.

How do the individual intercalibrated precipitation
estimates compare? All sensor types except the
AMSR-E recorded views of a storm southeast of Sri
Lanka during the 3-h period centered on 0000 UTC 2
May 2004 (Fig. 4). The enlargement for each subfigure
was done without interpolation so that individual grid-
box values are relatively easy to identify. While each
sensor depicts similar large-scale structure, consider-
able quantitative disagreement exists at the finescale.
Differences in observation times certainly are one fac-

tor; the shifts in location of the main rain system just
south of the equator are broadly consistent with its
westward motion and the observation times for each of
the sensors. The viewing angles of the LEO satellites
differ widely for these particular overpasses, giving the
possibility that each records a different radiometric mix
from the same three-dimensional scenes. An additional
issue for the AMSU-B is that its cross-track scanning
smooths fields due to the enlargement of FOVs at the
swath edge. Such differences have an important role in
creating the large uncertainties at the finest scales, dis-
cussed below.

Once the input microwave estimates are calibrated
for each satellite and grid boxes containing �40% am-
biguous FOVs are reset to “missing,” the grid is popu-
lated by the “best” data from all available overpasses.
When there are multiple overpasses in the 3-hourly
window for a given grid box, data from TCI, TCI-
adjusted TMI, TCI-adjusted AMSR-E, and TCI-
adjusted SSM/I are averaged together. Tests show that
the histogram of precipitation rate is somewhat sensi-
tive to the number of overpasses averaged together, so
in the future we plan to test a scheme taking the single
“best” overpass in the data window period. In contrast,
the TCI-adjusted AMSU-B estimates are used only if
none of the others are available for the grid box, due to
the detectability deficiency in the AMSU-B estimates
over ocean discussed above. Figure 5 (top) provides an
example combined microwave field. The data voids
(gray areas) arise both from the lack of data during the
3-h period (outside the smoothly arcing swaths of data)
and from unfavorable surface conditions (northern Ja-
pan and southern South America).

b. Microwave-calibrated IR estimates

As noted above, the research product uses two dif-
ferent IR datasets for creating the complete record of
3-hourly 0.25° gridded Tb’s. In the period from 1 Janu-
ary 1998 to 7 February 2000, each grid box’s histogram
in the 1° � 1° 3-hourly GPCP IR histogram dataset is
zenith-angle corrected, averaged to a single Tb value for
the grid box, and plane-fit interpolated to the 0.25° grid.
For the period from 7 February 2000 onward, the CPC
merged IR is averaged to 0.25° resolution and com-
bined into hourly files as �30 min from the nominal
time. The amount of imagery delivered to CPC varies
by satellite operator, but international agreements
mandate that full coverage be provided at the 3-hourly
synoptic times (0000, 0300, . . . , 2100 UTC). Histograms
of time–space matched combined microwave [or high
quality (HQ)] precipitation rates and IR Tb’s, each rep-
resented on the same 3-hourly 0.25° � 0.25° grid, are
accumulated for a month into histograms on a 1° � 1°
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grid, aggregated to overlapping 3° � 3° windows, and
then used to create spatially varying calibration coeffi-
cients that convert IR Tb’s to precipitation rates. These
coefficients approximately trace back to the TCI stan-
dard since the HQ inputs are all calibrated to the TCI.
As in most of the calibrations for the HQ, the calibra-
tion month is the calendar month. Screening for am-
biguous data described above for the HQ is also applied
here to the coincident data to control artifacts.

By design, there is no precipitation when the 0.25° �
0.25° average Tb is greater than the local threshold

value, while increasingly colder Tb’s are assigned in-
creasingly large precipitation rates using histogram
matching. Those grid boxes that lack coincident data
throughout the month, usually due to cold-land drop-
outs or ambiguous editing, are given calibration coeffi-
cients by smooth-filling histograms of coincident data
from surrounding grid boxes. Finally, preliminary test-
ing showed that the precipitation rates assigned to the
coldest Tb’s by strict probability matching tended to
show unphysical fluctuations. To ameliorate this effect,
a somewhat subjectively chosen coldest 0.17% of the Tb

FIG. 4. Single-overpass snapshots from various intercalibrated satellite precipitation estimates for a region
southeast of Sri Lanka for the 3-h period centered at 0000 UTC 2 May 2004. The SSM/I and AMSU-B swaths are
from the DMSP F13 and NOAA-K satellites, respectively. For each subimage, the southeastern coast of Sri Lanka
is in the upper left corner, the equator is a horizontal dashed line, and longitude 90°E is a vertical dashed line. Black
denotes missing data, except the latitude, longitude, and coast lines are white in data voids and black otherwise. The
time offset of each image from the nominal 0000 UTC is given in minutes on each subimage.
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histogram is specified by a fourth-order polynomial fit
to a climatology of coldest 0.17% precipitation rate
points around the globe. In each grid box a constant is
added to the climatological curve to make it piecewise

continuous with the grid box’s Tb-precipitation rate
curve at the 0.17% Tb.

Once computed, the HQ–IR calibration coefficients
are applied to each 3-hourly IR dataset during the

FIG. 5. Example of output from the RT algorithm, showing (top) the combined microwave field (HQ or 3B40RT), (upper middle)
microwave-calibrated IR (VAR or 3B41RT), (lower middle) merged microwave IR field (HQVAR or 3B42RT), and (bottom) the
HQ–VAR difference for the nominal observation time at 1800 UTC 24 Sep 2002. Grayed-out areas lack data for the calculation.
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month. Figure 5 (upper middle) provides an example
microwave-calibrated field; spatial coverage by the IR
is nearly complete in the latitude band for which we
compute estimates (50°N–S). Note in Fig. 4 how the IR
subfigure qualitatively agrees with the individual inter-
calibrated microwave estimates, although the area-
average precipitation rate and coverage by precipita-
tion happen to display higher values in that case.

c. Merged microwave and IR estimates

The ultimate goal of this project is to provide the
“best” estimate of precipitation in each grid box at each
observation time. It is frequently quite challenging to
combine different estimates of an intermittent field
such as precipitation. The process of combining passive
microwave estimates is relatively well behaved because
the sensors are quite similar and GPROF is used for
most retrievals. This is not the case for the microwave
and IR fields, as shown in the difference field in Fig. 5
(bottom). In addition to the seemingly random differ-
ences that we would expect, there are also systematic
differences (discussed below).

Given these issues, we apply a simple approach for
combining the microwave and IR estimates, namely,
the physically based combined microwave estimates are
taken “as is” where available, and the remaining grid
boxes are filled with microwave-calibrated IR esti-
mates. This scheme provides the “best” local estimate,
at the expense of a time series that contains heteroge-
neous statistics. Qualitatively, the example merged field
in Fig. 5 (lower middle) displays few noticeable data
boundaries, in part due to the strong spatial variability
that real precipitation systems exhibit. Note the rain
systems associated with then–Tropical Storm Irene
(east of the Bahamas), and Hurricanes Fernando and
Greg (southwest and south of Baja California, Mexico).
A midlatitude low pressure center and trailing front are
located north of Hawaii, and late-afternoon convection
is decaying in central Africa.

The difference field (Fig. 5, bottom) facilitates a com-
parison of the two fields. The convective systems, such
as the African thunderstorms and hurricanes, tend to
show local differences, most likely due to the delay in
time between the occurrence of precipitation and the
growth of cirrus at the top of the storm. The midlatitude
system shows a larger-scale offset, which is interpreted
as resulting from the frontal-scale offset between high-
level cirrus ahead of the system and the precipitation,
which is located closer to the low pressure center and
frontal zone. Some of the offsets shown in the differ-
ence field could also be due to the 3-h window for
microwave data.

Images of the 3-hourly algorithm are best viewed as
movie loops, examples of which are posted online at
http://trmm.gsfc.nasa.gov under the button labeled
“Realtime 3 Hourly & 7 Day Rainfall.”

d. Rescaling to monthly data

The final step in the research product is the use of
rain gauge data. It is highly advantageous to include
rain gauge data in combination datasets (Huffman et al.
1997, among others). However, experience shows that
on any time scale shorter than a month the gauge data
are neither reported with sufficient density nor re-
ported with consistent observational intervals to war-
rant direct inclusion in a global algorithm. The authors
solved this issue in the GPCP One-Degree Daily com-
bination dataset by scaling the short-period estimates to
sum to a monthly estimate that includes monthly gauge
data (Huffman et al. 2001). Here, we take a similar
approach: all available 3-hourly merged estimates are
summed over a calendar month to create a monthly
multisatellite (MS) product. The MS and gauge are
combined as in Huffman et al. (1997) to create a post-
real-time monthly SG combination, which is a TRMM
research-grade product in its own right (3B43). Then
the field of SG/MS ratios is computed on the 0.25° �
0.25° grid (with controls) and applied to scale each
3-hourly field in the month, producing the version-6
3B42 product. This gauge adjustment step is denoted in
Fig. 3 with grid shading. The result is to provide the
high resolution typical of satellite data and the typically
small bias of gauge analyses over land.

e. RT algorithm adjustments

The RT and research product systems are designed
to be as similar as possible to ensure consistency be-
tween the resulting datasets. The first important differ-
ence is that the calibrator used for the research product,
the TCI, is not available in real time. In its absence we
use the TMI estimates from TRMM. In the future we
plan to test the PR as the standard for calibration in
both the research and RT products.

Second, a real-time system cannot reach into the fu-
ture, so the calibration month is taken as a trailing ac-
cumulation of 6 pentads.1 Before February 2005, the
TMI–SSM/I intercalibration and the microwave–IR co-
efficients are each recomputed at the end of each pen-
tad, while thereafter the intercalibration of individual

1 A pentad is a 5-day period, except when Leap Day is included
in the pentad that encompasses it. There are 73 pentads in each
year, starting with 1–5 January.
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microwave estimates to the TMI is handled with clima-
tological coefficients, and the microwave-IR calibra-
tions are recomputed at each 3-hourly time from the
five trailing and one current (partial) pentad. The slant
shading in Fig. 3 denotes the calibration steps in the
algorithm block diagram. The change in microwave in-
tercalibration was made for computational simplicity
and in preparation for possible loss of TRMM data.
The change in microwave-IR calibration was intended
to better capture rapid changes in the calibration for
rare heavy rain events, as discussed in section 5c.

A third important difference for the RT system is
that the monthly gauge adjustment step carried out for

the research product is not possible. We plan to de-
velop a climatological adjustment to minimize the bi-
ases between the RT and research products due to both
differences in calibration source and in use of gauge
data.

Figure 6 typifies the relation between the RT and
research products. Each data source is averaged over
the 4-day period 1–4 June 2005, arbitrarily chosen from
the epoch with the “current” RT algorithm and in-
tended to give a sort of synoptic-scale picture. Large-
scale averages of the two fields are within a few percent
of each other, but systematic regional differences are
apparent. For the most part, these should reflect the

FIG. 6. Example accumulations of (top) research (version-6 3B42) and (middle) RT (3B42RT) products, and (bottom) the map of
differences for the period 1–4 Jun 2005 in mm day�1.
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differences in the calibrations applied to the two
datasets. The ITCZ is somewhat lower amplitude and
broader in the (TCI calibrated) research product, com-
pared to the (TMI calibrated) RT. In the southern ex-
tratropics the research product is higher almost every-
where, while the picture is decidedly mixed in the
northern extratropics. Over land the TCI calibration is
importantly modified by the indirect use of the rain
gauge analysis in creating the final version-6 3B42. Low
values in interior tropical Africa, central Asia, and the
Great Plains in the United States, as well as higher
values in equatorial Amazonia and along the south-
western coast of India are consistent with known issues
with microwave-based estimates in those regions.

4. Dataset status

The RT system has been running routinely on a best-
effort basis in TSDIS since late January 2002 and is
currently on its third release. For simplicity, a fixed 9-h
latency is used as the trigger to run the processing, a
delay that typically captures �95% of potential micro-
wave estimates. The combined microwave, microwave-
calibrated IR, and merged microwave–IR estimates,
which are labeled 3B40RT, 3B41RT, and 3B42RT, re-
spectively, are available from ftp://trmmopen.gsfc.
nasa.gov or http://precip.gsfc.nasa.gov. The research
product system has been developed as the version-6
algorithm for the TRMM operational product 3B42,
although that product only provides the final gauge-
adjusted merged field. The version-6 TRMM 3B43
product has been developed as the post-real-time
monthly SG precipitation product described above.
Version-6 data are available for January 1998 to the
(delayed) present at http://disc.sci.gsfc.nasa.gov/data/
datapool/TRMM/, and an interactive analysis and dis-
play capability is provided at http://disc2.nascom.
nasa.gov/Giovanni/tovas.

5. Comparisons and examples

Various studies examining the performance and util-
ity of early versions of the RT product have already
appeared. For example, Katsanos et al. (2004) exam-
ined daily scale performance against gauge data in the
eastern Mediterranean Sea and found that the TMPA–
RT performed best when precipitation was relatively
frequent but suffered a bias at high rain rates. In this
section we provide a few representative comparisons of
TMPA performance and show some typical uses. More
comprehensive evaluations are in preparation as part of
the long-term intercomparison of quasi-operational
global precipitation datasets over continental-scale re-

gions, the Program for Evaluation of High-Resolution
Precipitation Products (PEHRPP), being organized
by the International Precipitation Working Group
(IPWG) of the Coordinating Group for Meteorological
Satellites (Turk et al. 2006).

a. Comparison data

1) KWAJALEIN ISLAND, RMI RADAR

The TRMM Ground Validation (GV) group collects
operational radar scans from the radar at Kwajalein
Island (KWAJ), Republic of the Marshall Islands
(RMI), to which they apply the recently developed
relative calibration adjustment (RCA) to correct ongo-
ing uncertainty with the radar’s calibration (Marks et
al. 2005; Silberstein et al. 2005). The recalibrated re-
flectivities are quality controlled, then matched against
coincident rain gauge data using the Window Probabil-
ity Matching Method (WPMM; Rosenfeld et al. 1994)
to generate Ze–R relationships that vary over time and
range from the radar. The resulting TRMM 2A-53 GV
product is a 2 km � 2 km instantaneous rain map every
half hour extending 150 km from KWAJ (Wolff et al.
2005). For this study, the 2-km data were averaged to
the 0.5° grid used for comparison to the buoy gauges
and accumulated to 3-hourly and monthly intervals.
Residual artifacts, periods of data unavailability, and
small-scale fluctuations in the Ze–R relationship all in-
troduce uncertainty into the results.

2) NWS MELBOURNE, FLORIDA, WEATHER

SURVEILLANCE RADAR-1988 DOPPLER

(WSR-88D)

Similarly, the TRMM GV group collects operational
radar scans from the NWS radar at Melbourne, Florida
(MELB), quality controls them, then applies WPMM to
generate the MELB TRMM 2A-53 GV product. No
RCA is needed at MELB.

3) AUSTRALIAN GAUGE DATA

Daily precipitation analyses over Australia are pro-
vided by the Bureau of Meteorology, where reports
from up to 6000 gauges are quality controlled and ob-
jectively analyzed to a 0.25° � 0.25° latitude–longitude
grid (Weymouth et al. 1999). The quality of the analysis
depends on the density of gauge reports (sparser data
imply larger errors), the complexity of the local terrain
(since gauges in mountain areas are generally sited in
valleys and, therefore, underreport the true areal aver-
age rainfall), and undercatch. The undercatch is primar-
ily due to aerodynamic effects at the mouth of the
gauge (Sevruk 1989), but we usually lack the requisite

FEBRUARY 2007 H U F F M A N E T A L . 47



data to compute the time-dependent correction for
each station. The Legates (1987) climatological correc-
tions seem to indicate that the bias should be less than
10% in many tropical and warm-season temperate ar-
eas.

4) ATOLL GAUGE DATA

The Comprehensive Pacific Rainfall Database
(PACRAIN; Morrissey and Greene 1991) provides
daily and/or monthly island-sited rain gauge data from
the western and central tropical Pacific Ocean. The
present study follows the common practice of selecting
stations sited on atolls and treating them as represen-
tative of the open ocean in their region, although this
approximation continues to generate controversy. Pos-
sible errors include misidentification of missing values
as zeroes and undercatch.

5) BUOY GAUGE DATA

Multiyear observations of rainfall are being recorded
on selected buoys in the Triangle Trans Ocean Buoy
Network (TRITON) and Tropical Atmosphere Ocean
(TAO) programs in the west and east Pacific Ocean,
respectively (McPhaden et al. 1998). In the present
study the original 10-min rain rates (Serra et al. 2001)
are averaged over 3-h intervals centered on the synop-
tic observing times, and then all rates below 0.1 mm h�1

are set to zero. This thresholding is necessary to control
the noise that broadens the spike in the rain-rate his-
togram at zero rain rate into a Gaussian centered
slightly below zero; the threshold value was chosen in a
preliminary examination of the rain-rate histogram for
several buoy gauges with significant rain. As with the
other gauge data sources, the major source of error is
likely a negative bias due to undercatch.

6) NERN

An integral part of the North American Monsoon
Experiment (NAME), which is focused on northwest-
ern Mexico, is an array of 87 tipping-bucket gauges that
are arranged in transects from sea level to the heights of
the Sierra Madre known as the NAME Event Rain
Gauge Network (NERN; Gochis et al. 2004). The array
is specifically laid out to capture the strong orographic
influence on precipitation that is known to dominate
the region’s climatology.

b. Comparisons

1) MONTHLY

Ebert (2005) presented one early set of monthly re-
sults that uses the Australian rain gauge datasets intro-

duced above. In general, she finds that the various
satellite estimates, including early versions of the
TMPA–RT, perform best in relatively heavy, convec-
tive, warm-season regimes, while they perform more
poorly in relatively light, cool-season regimes that are
more midlatitude in nature. The version of 3B42RT
operational in 2004 showed a definite seasonal cycle,
with Australia-average positive (negative) monthly bias
during the warm (cool) season and correlation coeffi-
cients hovering around 0.50 (0.30) in the warm (cool)
season. In contrast, we find that the version-6 3B42
results are significantly closer to the validation data, as
one might expect with implicit gauge calibration. Cor-
relation coefficients exceed 0.90 for 10 of the 12 months
in 2004 and there is no obvious seasonal cycle in the
bias. Meanwhile, 3B42RT showed a mean absolute
monthly bias of roughly 28% for the entire year 2004,
while the version-6 TMPA mean absolute monthly bias
for 2004 only approaches 9%. The bias over all of Aus-
tralia for 2004 is 6.8%, which is interpreted as mostly
reflecting the climatological undercatch correction that
we apply to the TMPA, but which is not present in the
Australian analysis. Ebert et al. (2007) present further
comparisons for Australia, the United States, and the
United Kingdom that reproduce and extend the results
quoted here.

Turning to the oceans, the atoll and buoy rain gauge
datasets introduced above may be used as the surface
reference data because they are not included in pro-
cessing 3B42/43. The finest possible spatial scale for
these comparisons is 0.5° � 0.5° latitude–longitude be-
cause the buoys are all located at the corners of the
0.25° grid boxes. Figure 7 provides the scatterplot for all
monthly matchups of (single) rain gauge and averaged
version-6 3B43, which is essentially the monthly sum of
3B42. The atoll scattergram (Fig. 7a) is quite consistent
with the buoy scattergram (Fig. 7b), showing nearly
equitable scatter about the 1:1 line with roughly linear
bias over the range of rain rates. Table 1 lists the cor-
responding basic statistics of average, bias, and root-
mean-square (RMS) difference. The consistency be-
tween the atoll and buoy results tends to build confi-
dence that these two rather different data sources are in
fact giving a realistic assessment. Further analysis will
investigate climate regime dependence, an effect that is
illustrated by separating the buoy data into locations
west and east of the date line (Fig. 7b; Table 1).

In contrast to the point estimates produced by
gauges, the radar estimates from KWAJ are true area
averages for a tropical ocean area. The 6-yr monthly
plot in Fig. 7c shows all the 0.5° grid-box comparisons
within the 100-km range limit for KWAJ, so it only
represents one area, while the gauge plots cover vast
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reaches of the tropical Pacific. Nonetheless, the general
patterns within the scatterplots are similar. The statis-
tics in Table 1 reinforce the conclusion that the radar
and gauge results are consistent at the monthly scale.

Recalling that none of the gauge data have been cor-
rected for undercatch, we note that the bias against the
atoll gauges is close to that against the KWAJ radar
estimates, which are calibrated by similar island-based

FIG. 7. Scattergrams comparing monthly research product (version-6 3B42) precipitation estimates to monthly averages reported by
single gauges located on (a) atolls and (b) TAO/TRITON buoys for the 7-yr period January 1998 to December 2004, as well as to (c)
Kwajalein radar and (d) overland Melbourne radar estimates for the 6-yr period January 1999 to December 2004. All gridding is at
0.5° � 0.5° monthly, values are expressed as mm day�1, and the buoy reports are separated into west and east Pacific (west and east
of the date line, shown as x’s and �’s, respectively).

TABLE 1. Average, bias, and RMS difference statistics comparing monthly accumulations reported at single gauges located on atolls
and TAO/TRITON buoys, and monthly 0.5° � 0.5° accumulations of calibrated radar estimates with collocated monthly 0.5° � 0.5°
accumulations of the monthly research product (version-6 3B43) for the 7-yr period January 1998 to December 2004. All values are
expressed as mm day�1 or percentages, as appropriate.

Gauge source No. of comparisons Avg observed precipitation Bias (3B43 � obs) RMS difference

Atolls 1572 7.27 �1.21 (�16.6%) 3.10 (42.4%)
All buoys 1021 3.87 �0.29 (�7.5%) 1.95 (50.4%)
West Pacific buoys 323 7.26 �0.16 (�2.2%) 2.34 (32.2%)
East Pacific buoys 698 2.32 �0.35 (�15.2%) 1.74 (75.0%)
KWAJ 504 5.40 �0.99 (�18.4%) 1.94 (36.0%)
MELB land 441 3.26 �0.23 (�7.1%) 1.17 (35.4%)
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gauges sited around Kwajalein Atoll. On the other
hand, the bias against the buoy gauges is noticeably
smaller. We suspect that this is largely due to larger
undercatch by the buoy gauges. A definitive study of
undercatch by the buoy gauges is lacking, but Serra et
al. (2001) give a range of estimates that is greater than
is typical for land-based gauges, in part because the
buoy gauges are mounted relatively high above the sur-
face and in part because the wide-open ocean sites
present fewer obstacles to the wind than most land
sites. This discussion makes it clear that a better evalu-
ation is needed for undercatch by the buoy gauges.

As a comparison using consistent analysis methods,
we analyze overland matchups to the Melbourne WSR-
88D (Fig. 7d; Table 1). Although the patterns are simi-
lar, the Melbourne land results show a smaller bias and
less scatter across the range of rain rates. We attribute
these improvements to the gauge adjustment that the
research product incorporates over land.

Taking an even larger-scale view, consider the
monthly time series of precipitation averaged over
ocean regions for the latitude band 30°N–S (Fig. 8). The
version-6 3B43 (again, essentially the sum of the
month’s 3B42; shown as a solid line) is closely related to
the TCI (gray dash–dot line) that is taken as the cali-
bration standard for the passive microwave input fields,
except that over time the 3B43 shifts to a negative bias
of almost 10%. This result stems from the AMSU-B
rain estimates currently in use. First, as discussed ear-
lier, the current AMSU-B algorithm fails to detect light
rain over oceans, particularly in the subtropical highs.
We tempered the influence of this AMSU-B deficiency
by only using AMSU-B when no other microwave types

were available, but it is impossible to rescale the
AMSU-B rain values that are zero. So, the successive
introduction of AMSU-B satellites during 2000–02
leads to an increasingly negative bias. A second issue
for the AMSU-B is that a revised algorithm was applied
to data observed after 30 July 2003, and the revised
algorithm has additional difficulty in identifying light
precipitation over ocean, even though the overall na-
ture of the rain retrieved is better. The authors and the
algorithm developers are presently working to develop
a correction approach for the AMSU-B algorithm. A
comparable issue usually does not arise over land be-
cause all of the microwave estimates are limited to scat-
tering algorithms, erasing the advantage that the coni-
cal scan sensors have over ocean, and because the rain
gauge calibration step keeps the monthly TMPA close
to the “right” answer.

The GPCP version 2 is also included on Fig. 8 for
comparison (dashed line), and it tracks rather closely
with the TCI and version-6 3B43, except for the drift in
3B43 bias that we ascribe to AMSU-B. The calibrator
for GPCP over ocean is the Chang–Chiu–Wilheit emis-
sion algorithm computed for a single-SSM/I time series
(Adler et al. 2003), which is quite different than the
TCI. This agreement helps build confidence in each
result.

2) DAILY/SUBDAILY

Moving to shorter time scales, the TMPA estimates
show considerably more uncertainty, in common with
other short-interval precipitation estimates and for the
reasons illustrated by Fig. 4. It is a challenging area of
current research to adequately characterize and resolve
these uncertainties. In this section we focus on illustrat-
ing some representative behavior of the TMPA at fine
scales. Figure 9 gives a representative time series of the
3-hourly version-6 3B42 averaged over a 0.5° box cen-
tered at 5°N, 165°E (in the western Pacific ITCZ) for
May 2004, as well as the 3-hourly TAO/TRITON buoy
accumulations at that location. Despite the differences
in sampling, the two agree on the occurrence of most
precipitation events. Note that each precipitation event
lasts for only a small number of 3-h periods, typical of
the convective nature of the ITCZ. The cumulative dis-
tributions in this particular case are relatively close
throughout the month; in other cases a different se-
quence of over- and underestimates might lead the cu-
mulative distribution to be systematically low or high
for most of the month, even though the month might
well end in relatively close agreement. Any of these
outcomes is consistent with the design goal of the
TMPA, which is that the histogram of 3-hourly esti-
mates approximates the histogram of rain that a good

FIG. 8. Time series of the monthly research product (version-6
3B43; solid), version-6 TRMM Combined Instrument 3B31 (gray
dash–dot), and GPCP version-2 SG (dashed) averaged over ocean
regions in the latitude band 30°N–S.
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validation array would observe over the same area and
time period.

Success at this design goal is demonstrated in the
matched data histograms of precipitation at the 0.5° �
0.5° 3-hourly scale from KWAJ for all of 2001 (Fig. 10).
The graphs are representative of other years of data as
well. The important high-end tail matches rather
closely, while the TMPA estimates show a somewhat
more peaked distribution at middle and low values than
the radar. This results both from the native histogram in

the Kwajalein region of the calibration source, the TCI,
and from the detectability problems noted above in the
various satellite estimates, particularly from AMSU-B.

The scattergram for all daily 0.5° � 0.5° matchups
between the buoy gauges and version-6 3B42 estimates
for the 7-yr period January 1998 to December 2004 is
shown in Fig. 11. Compared to the monthly plots in Fig.
7 there is much more scatter, as is typical of such short-
interval estimates, particularly when continuous accu-
mulations at a single point (gauge) are scattered against
sums of area-average snapshots (satellite). For daily
rain rates less than about 20 mm day�1 the distribution
of points is approximately constant along lines perpen-
dicular to the 1:1 line, while at higher rain rates the
points cluster toward the 1:1 line. It is typical of noisy,
calibrated estimates that the days with high rates
emerge as showing skill first, while the lower values
(the majority of days) tend to be less skillful as a group.
Throughout, the distribution is approximately symmet-
ric about the 1:1 line, although close inspection reveals
that more points lie to its right in agreement with the
monthly bias results.

c. Examples

Among the wide range of possible uses for TMPA
estimates, monitoring for extreme precipitation events
has high societal impact (Negri et al. 2005). In late May

FIG. 10. Histograms comparing 3-h 0.5° � 0.5° precipitation
rates reported by the Kwajelein radar (black) with collocated pre-
cipitation estimates from the research product (version-6 3B42;
gray) for 2001.

FIG. 11. Scattergrams comparing daily accumulations reported
at single gauges located on TAO/TRITON buoys with collocated
daily 0.5° � 0.5° accumulations of the research product (version-6
3B42) precipitation estimates for the 7-yr period January 1998 to
December 2004. All values are expressed as mm day�1.

FIG. 9. Time series of the 3-hourly precipitation from the gauge
on the TAO/TRITON buoy at 5°N, 165°E (black) and the sur-
rounding 0.5° � 0.5° average of the research product (version-6
3B42; gray) for May 2004. The 3-hourly data are shown with solid
lines (mm day�1) and the corresponding cumulative time series
are shown with dashed lines (mm).
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2004 an area of disturbed weather moved from south to
north across the island of Hispaniola, causing torrential
rains, flash flooding, and upward of 2000 fatalities. This
system failed to qualify even as a tropical depression
but required a significant international relief response.
In real time, the then-operational 3B42RT estimates
showed a highly concentrated event in the south-central
part of the island (Fig. 12, upper left) primarily occur-
ring on 24 May (Fig. 12, upper right). Postanalysis
seemed to suggest that the estimates were high, and at

that time the RT scheme only computed a new IR cali-
bration every 5 days, meaning the IR estimates, which
formed the bulk of the data, were only calibrated by
pre-event microwave data. When we shifted the IR cali-
bration month later by a single 5-day period to include
the flood event, the recalibrated high-end IR estimates
were lower by a factor of almost 2 (Fig. 12, lower left).
This result indicated that extreme events were more
sensitive to the calibration than we had expected, and it
led us to shift the RT system to recalibrating the IR

FIG. 12. (top left) Accumulation map and time series of accumulation averaged within the 250-km range ring centered at 19°N, 72°W
over the period 22–24 May 2004 for (top right) the original RT (3B42RT), (bottom left) a recalibrated RT, and (bottom right) the
research product (version-6 3B42). The range ring is depicted on the map as the black circle roughly centered on Hispaniola.
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coefficients every 3 h. Nonetheless, even this new,
lower value is symptomatic of a dangerous flood-
inducing event. When the version-6 3B42 was com-
puted (Fig. 12, lower right), it was similar to the revised
RT (Fig. 12, lower left), although the research product
featured a stronger burst around 1000 UTC 24 May.
Since the research product features both a calibration
period that encompasses the flood event and much
more microwave data than the then-operational
3B42RT, it appears that the IR calibration was the
dominant source of uncertainty in the RT analysis.

Another important application of short-interval pre-
cipitation estimates such as the TMPA is to estimate
the diurnal cycle of precipitation. Such information is
important for validating model performance, as well as
providing decision makers with background data on the
most likely times for heavy rain events. Comparing the
version-6 3B42 to the NERN in northwestern Mexico
for the 2004 summer season (June–August; Fig. 13), the
overall shape of the estimated diurnal cycle has good
agreement with observations. The main difference is
that the diurnal maximum through the afternoon and
evening is shifted somewhat more than 1 h later in the
TMPA and is somewhat stronger at its peak. This delay
warrants further investigation because the plentiful mi-
crowave estimates that dominate the research product
at this time are generally considered closely related to
coincident surface precipitation.

6. Concluding remarks

The TMPA has been developed to take advantage of
the increasingly rich constellation of satellite-borne
precipitation-related sensors. Estimates are provided at
relatively fine scales (0.25° � 0.25°, 3 hourly) in both
post–real and real time to facilitate use by a wide range
of researchers. However, the errors inherent in the fin-
est scale estimates are large. The most successful use of
the TMPA data is to take advantage of the fine scales to
create averages appropriate to the user’s application.

Looking to future work, the first task for the authors

is to further characterize the performance of this ap-
proach and explore differences between the RT and
research products. As part of this effort, we plan to
participate in PEHRPP (Turk et al. 2006). We also plan
to explore climatological adjustments to the RT prod-
uct to minimize its biases against the research version.
Another important effort is to improve intercalibration
of the microwave-based estimates, particularly address-
ing the oceanic light-precipitation deficiencies in the
current AMSU-B input.

At the same time, we expect to start extending the
estimates to the poles by incorporating fully global pre-
cipitation estimates based on Television Infrared Ob-
servation Satellite (TIROS) Operational Vertical
Sounder (TOVS), Advanced TOVS (ATOVS), and
Advanced Infrared Sounder (AIRS) data. The best ap-
proach to combining the microwave and IR estimates is
also a topic for future research. It would be helpful to
develop a better IR-based algorithm so that the com-
bination would not have to reconcile the strong fine-
scale differences that currently exist between the two.
We will consider shortening the production interval to,
say, hourly to better resolve the diurnal cycle and will
consider shifting the definition of the observation times
to better align with validation data. Finally, the study of
precipitation in general needs a succinct statistical de-
scription of how errors in finescale precipitation esti-
mates should be aggregated through scales up to global/
monthly.

On the instrumentation side there is a concerted ef-
fort to provide complete 3-hourly microwave data.
Most of this effort is focused on the National Aeronau-
tics and Space Administration’s Global Precipitation
Measurement (GPM) project. GPM is working to in-
crease the frequency of coverage by encouraging the
launch of additional precipitation-related sensors, and
to provide a next-generation TRMM-like “core” satel-
lite to calibrate all of the passive microwave estimates
on an ongoing basis. We expect the GEO–IR-based
estimates to have a long-term role in filling the inevi-
table gaps in microwave coverage, as well as in enabling

FIG. 13. Comparison of diurnal cycle for the research product (version-6 3B42; squares) and
NERN (dots) for the 2004 summer season (June–August). A cubic-spline interpolation be-
tween research product estimates is shown as a dashed line.
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sub-3-hourly precipitation estimates at fine spatial
scales.
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